Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Brain Research 1987-Oct

Astrocytes protect cultured neurons from degeneration induced by anoxia.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
S Vibulsreth
F Hefti
M D Ginsberg
W D Dietrich
R Busto

Mo kle

Abstrè

Neurons grown in cultures of dissociated brain cells degenerate when exposed to anoxia and deprived of glucose. We have developed culture systems in which neurons can be grown in the presence or absence of astrocytes and have used them to study the influence of astrocytes on the neuronal degeneration induced by anoxia and glucopenia. Cultures were prepared from fetal rat forebrains. Mixed cultures contained neurons (identified by immunocytochemical staining of neuron-specific enolase, NSE) and about an equal number of non-neuronal cells (identified by glial fibrillary acid protein). Pure neuronal cultures were prepared by adding a cytostatic compound (cytosine arabinoside) to the medium. Treated cultures were exposed for 4 h to glucose-free medium and an atmosphere of 95% N2 and 5% CO2, whereas control cultures were left in the usual medium containing glucose and in an atmosphere composed of 95% air and 5% CO2. After an interval of 24 h, cultures were fixed, taken for NSE staining, and the number of surviving neurons was counted. Exposure to anoxia and glucopenia reduced the number of surviving neurons in pure neuronal cultures to 5-10% of control levels. In contrast, in mixed cultures 40-60% of the neurons survived these conditions. Anoxia without glucose deprivation reduced the number of surviving neurons in both types of cultures to the same extent as anoxia combined with glucopenia. Glucose deprivation alone was ineffective. The findings suggest a protective influence of astrocytes on neurons under anoxic conditions. gamma-D-Glutamylglycine protected neurons in both types of cultures from anoxia-induced degeneration.(ABSTRACT TRUNCATED AT 250 WORDS)

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge