Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biotechnology and Applied Biochemistry

Autocatalytic growth of biofunctionalized antibacterial silver nanoparticles.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Sindhu Priya Dhas
Shiny Punalur John
Amitava Mukherjee
Natarajan Chandrasekaran

Mo kle

Abstrè

Development of eco-friendly processes for nanosynthesis is gaining importance owing to the widespread application of nanoparticles (NPs). In the present study, we have explained the mechanism and kinetics of bioreduction in the biosynthesis of silver nanoparticles (AgNPs) using aqueous leaf extract of Rhizophora apiculata. Spectrophotometric methods were employed to quantify the bioactive molecules present before and after the reduction process. The results showed that the polyphenols were the main components responsible for the biosynthesis of AgNPs, which was further confirmed by Fourier transform infrared spectroscopy. The kinetics of formation of AgNPs were monitored by time-resolved spectrophotometric and X-ray diffraction studies, which revealed that the NP formation is an autocatalytic process with a rate constant of 1.9 × 10(-2) Min(-1) . The NPs were characterized using spectroscopic and microscopic techniques like ultraviolet-visible absorption spectroscopy, dynamic light scattering, transmission electron microscopy, scanning electron microscopy-energy-dispersive X-ray spectroscopy, and X-ray diffraction. The biogenic AgNPs showed substantial inhibitory activity to Proteus mirabilis, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus with minimum inhibitory concentration values of 2.5, 12.5, 2.5, and 31.25 μg/mL, respectively. The current research provides an insight into the mechanistic aspects of bioreduction and formation of AgNPs.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge