Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Oncology 2002-Jul

Beta-adrenergic and arachidonic acid-mediated growth regulation of human breast cancer cell lines.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Y Cakir
H K Plummer
P K Tithof
H M Schuller

Mo kle

Abstrè

Adenocarcinoma of the mammary gland is the leading type of cancer in women. Among these breast cancers those that are estrogen-responsive respond well to existing therapeutic regimens while estrogen non-responsive cancers metastasize widely, demonstrate a high relapse rate, and respond poorly to therapy. Over-expression of the arachidonic acid-metabolizing enzymes cyclooxygenase-2 and lypoxygenases is frequently observed in breast cancer, particularly the non-estrogen-responsive type, suggesting a role of the arachidonic acid (AA) cascade in the growth regulation of these malignancies. Adenocarcinomas of the lungs, pancreas and colon also frequently over-express AA-metabolizing enzymes, and recent evidence suggests that the growth-regulating AA-cascade in these malignancies is under beta-adrenergic control. Our current experiments have therefore tested the hypothesis that in analogy to these findings adenocarcinomas of the breast are also regulated by beta-adrenergic receptors via stimulation of the AA-cascade. Analysis of DNA synthesis by [3H]-thymidine incorporation assays in three estrogen-responsive and three estrogen non-responsive cell lines derived from human breast cancers demonstrated a significant reduction in DNA synthesis by beta-blockers and inhibitors of cyclooxygenase or lipoxygenases in all cell lines. Analysis of AA-release in one of the most responsive cell lines demonstrated a time-dependent increase in AA-release in response to the beta-adrenergic agonist isoproterenol. Analysis by RT-PCR revealed expression of beta2-adrenergic receptors in all cell lines whereas beta1-adrenergic receptors were not found in two of the estrogen non-responsive cell lines. Our data suggest that a significant subset of human breast cancers is under control of beta-adrenergic receptors via stimulation of the AA-cascade. These findings open up novel avenues for the prevention and clinical management of breast cancer, particularly the non-estrogen-responsive types. Moreover, our findings suggest that cardiovascular disease and adenocarcinomas in a variety of organ systems, including the breast may share common risk factors and benefit from similar preventive and treatment strategies.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge