Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Drug and Chemical Toxicology 2019-Mar

Biogenic synthesis and characterization of silver nanoparticles using aqueous leaf extract of Scoparia dulcis L. and assessment of their antimicrobial property.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Radhika Parvataneni

Mo kle

Abstrè

Naturally occurring phytochemicals serve as an excellent substitute in synthesizing nanomaterials. A process for the synthesis of silver nanoparticles (AgNPs) from the aqueous leaf extract of naturally occurring Scoparia dulcis is described here. The extracellular formation of AgNPs occurred within few minutes upon incubation of S. dulcis aqueous leaf extract (0.1 mL) (100% extract) with silver nitrate (2 mM AgNO3) at 90 °C for 30 min, is first of its kind work. The appearance of bright yellow color with λmax 420 nm confirm the formation of AgNPs. Zeta potential and X-ray diffraction (XRD) studies reveal stable AgNPs (-22.7 mV) and characteristic spectra for silver. Fourier transform infrared (FTIR) spectroscopy indicate the involvement of carboxyl, amine and hydroxyl groups in the synthetic process. Transmission electron microscopy (TEM) show the spherical nature of AgNPs measuring 3-18 nm in size. Additional characterization using Dynamic light scattering (DLS) revealed the average particle size distribution of AgNPs as around 8.2 nm. Further antimicrobial testing through agar disc diffusion plate method indicated that silver nanoparticles are potentially active against pathogenic bacteria such as Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis and Staphylococcus aureus and are only optimally active against fungi such as Aspergillus niger and Candida albicans and measurement of minimal inhibition concentration by standard microdilution method. In conclusion, the study suggests that successful synthesis of green nanoparticles (AgNPs) using aqueous S. dulcis leaf extract is simple, rapid, environmentally benign and economical. Moreover, these synthesized silver nanoparticles showed antimicrobial activity.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge