Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Food and Function 2019-Aug

Ca2+-Calcineurin-NFAT pathway mediates the effect of thymol on oxidative metabolism and fiber-type switch in skeletal muscle.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Pei Luo
Lina Wang
Lv Luo
Leshan Wang
Kelin Yang
Gang Shu
Songbo Wang
Xiaotong Zhu
Ping Gao
Qingyan Jiang

Mo kle

Abstrè

Thymol is a major component of thyme, and it has been reported that thymol administration reduces body weight, plasma insulin and blood glucose in type-2 diabetes. Skeletal muscle is the most important metabolism organs in the body; however, to date, there is no report on the effect of thymol on skeletal muscle. Our goal was to determine whether thymol has an effect on the different types of skeletal muscle fibers and their metabolism characteristics. Hence, we performed in vivo and in vitro experiments. In vivo, SD rats (4 weeks old) were fed with different concentrations of thymol for 4 weeks, and in vitro C2C12 myotubes were directly treated with thymol for 2 days. The rats fed with 0.025% thymol showed a significantly lower body weight, subcutaneous white adipose tissue index and gastrocnemius muscle index (P < 0.05), while their proportion of brown adipose tissue significantly increased (P < 0.05). The protein and mRNA expression of MyHC I and MyHC IIa in the gastrocnemius muscle of the rats significantly increased (P < 0.05), while the protein level of MyHC II and mRNA expression of MyHC IIb decreased (P < 0.05). Furthermore, 0.025% thymol supplement significantly reduced (P < 0.05) the activity of lactate dehydrogenase (LDH) in the gastrocnemius muscle of the rats, but their succinate dehydrogenase (SDH) and hexokinase (HK) activities increased (P < 0.05). Also, the expression of the fatty acid oxidation-related genes in the gastrocnemius muscle of the rats decreased with the thymol supplement (P < 0.05). In vitro, similar results were obtained. Furthermore, the Ca2+-calcineurin-NFAT pathway, which is an important pathway to regulate the transformation of skeletal muscle fiber type, was studied. We found that the effects of thymol on the myosin heavy chain isoforms, genes related to metabolism and the activation of the Ca2+-calcineurin-NFAT pathway were all reversed by a Ca2+ chelator (P < 0.05). Thus, thymol can promote the oxidative metabolism and fiber type switch in skeletal muscle, and the Ca2+-calcineurin-NFAT pathway plays an important role in it.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge