Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Physiologia Plantarum 2007-Dec

Characteristics of photosynthesis and functions of the water-water cycle in rice (Oryza sativa) leaves in response to potassium deficiency.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Xiao-Yan Weng
Chen-Juan Zheng
Hong-Xia Xu
Jian-Yi Sun

Mo kle

Abstrè

The mechanisms of photoprotection of photosynthesis and dissipation of excitation energy in rice leaves in response to potassium (K) deficiency were investigated. Net photosynthetic rate and the activity of ribulose-1,5-bisphosphate carboxylase/oxygenase decreased under K deficiency. Compared with the control, non-photochemical quenching of Chl fluorescence increased in K-deficient plant, whereas the efficiency of excitation transfer (F'(v)/F'(m)) and the photochemical quenching coefficient (q(P)) decreased. Thus, thermal dissipation of excitation energy increased as more excess electrons were accumulated in the photosynthetic chain. The electron transport rate through PSII (J(f)) was more sensitive to O2 concentration, and the fraction of electron transport rate required to sustain CO2 assimilation and photorespiration (J(g)/J(f)) was significantly decreased under K deficiency compared with the control. Furthermore, the alternative electron transport (J(a)/J(f)) was increased, indicating that a considerable amount of electrons had been transported to O2 during the water-water cycle in the K-deficient leaves. Although the fraction of electron transport to photorespiration (J(o)/J(f)) was also increased in the K-deficient leaves, it was less sensitive than that of the water-water cycle. With the generation of reactive oxygen species level, the activities of superoxide dismutase and ascorbate peroxidase, two of the key enzymes involved in scavenging of active oxygen species in the water-water cycle, also increased in K-deficient rice. Therefore, it is likely that a series of photoprotective mechanisms were initiated in rice plants in response to K deficiency and the water-water cycle might be critical for protecting photosynthetic apparatus under K deficiency in rice.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge