Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Photosynthesis Research 2004-Feb

Chlorophyllide a Oxygenase mRNA and Protein Levels Correlate with the Chlorophyll a/b Ratio in Arabidopsis thaliana.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Andrea L Harper
Sigrid E von Gesjen
Alicia S Linford
Michael P Peterson
Ruth S Faircloth
Michelle M Thissen
Judy A Brusslan

Mo kle

Abstrè

Plants can change the size of their light harvesting complexes in response to growth at different light intensities. Although these changes are small compared to those observed in algae, their conservation in many plant species suggest they play an important role in photoacclimation. A polyclonal antibody to the C-terminus of the Arabidopsis thaliana chlorophyllide a oxygenase (CAO) protein was used to determine if CAO protein levels change under three conditions which perturb chlorophyll levels. These conditions were: (1) transfer to shaded light intensity; (2) limited chlorophyll synthesis, and (3) during photoinhibition. Transfer of wild-type plants from moderate to shaded light intensity resulted in a slight reduction in the Chl a/b ratio, and increases in both CAO and Lhcb1 mRNA levels as well as CAO protein levels. CAO protein levels were also measured in the cch1 mutant, a P642L missense mutation in the H subunit of Mg-chelatase. This mutant has reduced total Chl levels and an increased Chl a/b ratio when transferred to moderate light intensity. After transfer to moderate light intensity, CAO mRNA levels decreased in the cch1 mutant, and a concomitant decrease in CAO protein levels was also observed. Measurements of tetrapyrrole intermediates suggested that decreased Chl synthesis in the cch1 mutant was not a result of increased feedback inhibition at higher light intensity. When wild-type plants were exposed to photoinhibitory light intensity for 3 h, total Chl levels decreased and both CAO mRNA and CAO protein levels were also reduced. These results indicate that CAO protein levels correlate with CAO mRNA levels, and suggest that changes in Chl b levels in vascular plants, are regulated, in part, at the CAO mRNA level.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge