Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Gene 2014-Aug

Cloning, characterization, expression analysis and inhibition studies of a novel gene encoding Bowman-Birk type protease inhibitor from rice bean.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Rajan Katoch
Sunil Kumar Singh
Neelam Thakur
Som Dutt
Sudesh Kumar Yadav
Rich Shukle

Mo kle

Abstrè

This paper presents the first study describing the isolation, cloning and characterization of a full length gene encoding Bowman-Birk protease inhibitor (RbTI) from rice bean (Vigna umbellata). A full-length protease inhibitor gene with complete open reading frame of 327 bp encoding 109 amino acids was cloned from rice bean seeds using degenerate primer set. BlastP search revealed that the RbTI encoded amino acid of approx 13.0 kDa and shared 99% homology each with BBI from Phaseolus parvulus, Vigna trilobata and Vigna vexilata. Phylogenetic tree also showed close relationship of RbTI with BBI from other members of Leguminaceae family. RbTI gene was further confirmed as intronless (GenBank accession no. KJ159908). The secondary and 3D-structural models for the RbTI were predicted with homology modeling. qRT-PCR studies revealed the highest RbTI expression in the seeds nearing maturity, whereas the low expression of the gene was noticed in young leaves. The isolated RbTI was successfully expressed in Escherichiacoli and the highest expression was recorded after 5.5h of induction. Study on the inhibitory activity of expressed protein against the gut proteases of Hessian fly larvae revealed 87% inhibition. The novel RbTI gene will further broaden the pool of plant defense genes and could be an ideal choice for developing transgenic crops resistant to insect pests with high economic value. In addition, it has the potential to be used as a probe for selection of insect- and pathogen-resistant genotypes.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge