Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Transgenic Research 2014-Apr

Comparative analysis of different biofactories for the production of a major diabetes autoantigen.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Linda Avesani
Matilde Merlin
Elisa Gecchele
Stefano Capaldi
Annalisa Brozzetti
Alberto Falorni
Mario Pezzotti

Mo kle

Abstrè

The 65-kDa isoform of human glutamic acid decarboxylase (hGAD65) is a major diabetes autoantigen that can be used for the diagnosis and (more recently) the treatment of autoimmune diabetes. We previously reported that a catalytically-inactive version (hGAD65mut) accumulated to tenfold higher levels than its active counterpart in transgenic tobacco plants, providing a safe and less expensive source of the protein compared to mammalian production platforms. Here we show that hGAD65mut is also produced at higher levels than hGAD65 by transient expression in Nicotiana benthamiana (using either the pK7WG2 or MagnICON vectors), in insect cells using baculovirus vectors, and in bacterial cells using an inducible-expression system, although the latter system is unsuitable because hGAD65mut accumulates within inclusion bodies. The most productive of these platforms was the MagnICON system, which achieved yields of 78.8 μg/g fresh leaf weight (FLW) but this was substantially less than the best-performing elite transgenic tobacco plants, which reached 114.3 μg/g FLW after six generations of self-crossing. The transgenic system was found to be the most productive and cost-effective although the breeding process took 3 years to complete. The MagnICON system was less productive overall, but generated large amounts of protein in a few days. Both plant-based systems were therefore advantageous over the baculovirus-based production platform in our hands.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge