Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biotechnology 2015-Apr

Complexation of alkyl glycosides with α-cyclodextrin can have drastically different effects on their conversion by glycoside hydrolases.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Mohd Younis Rather
Eva Nordberg Karlsson
Patrick Adlercreutz

Mo kle

Abstrè

Substrates present in aggregated forms, such as micelles, are often poorly converted by enzymes. Alkyl glycosides constitute typical examples and the critical micelle concentration (CMC) decreases with increasing length of the alkyl group. In this study, possibilities to hydrolyse alkyl glycosides by glycoside hydrolases were explored, and α-cyclodextrin was used as an agent to form inclusion complexes with the alkyl glycosides, thereby preventing micelle formation. The cyclodextrin complexes were accepted as substrates by the enzymes to variable extent. The β-glucosidases originating from Thermotoga neapolitana (Tn Bgl3B) and from almond were not at all able to hydrolyse alkyl β-glucosides in the presence of 100mM α-cyclodextrin. However, Aspergillus niger amyloglucosidase readily accepted the complexes as substrates. In reactions involving decyl and dodecyl maltosides, the presence of 100mM α-cyclodextrin caused an increase in reaction rate in most cases, especially at high substrate concentrations. Surprisingly, the amyloglucosidase-catalyzed hydrolysis of octyl-β-maltoside to glucose and β-octylglucoside was faster in the presence of α-cyclodextrin than without, even at substrate concentrations below CMC. A possible explanation of the observed rate enhancement is that binding sites on the carbohydrate binding domain of amyloglucosidase, known to bind cyclodextrins, help to guide the alkyl glycoside-cyclodextrin complex to the active site, and thereby promote its conversion.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge