Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Neuroscience 2007-Sep

Continuous intra-arterial application of substance P induces signs and symptoms of experimental complex regional pain syndrome (CRPS) such as edema, inflammation and mechanical pain but no thermal pain.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
G Gradl
B Finke
S Schattner
P Gierer
T Mittlmeier
B Vollmar

Mo kle

Abstrè

Substance P is involved in nociception in both the peripheral nervous system and the CNS and has been documented to play a crucial role in the complex regional pain syndrome (CRPS). So far, however, most experimental animal models are restricted to the effect of neurokinin-1 receptor blockers to inhibit substance P and do not directly evaluate its action. Thus, this study was conducted to test the hypothesis that local application of substance P causes signs and symptoms of CRPS. For this purpose rats received a continuous infusion of either substance P or saline over 24 h delivered by a mini-osmotic pump connected to an intrafemoral catheter. Animals were analyzed at either day 1 (n=6, each group) or day 4 (n=5, each group) after start of infusion. Substance P application caused a significant and long-lasting decrease in paw withdrawal thresholds upon mechanical stimulation, while animals did not present with thermal allodynia at days 1 and 4 after onset of infusion. In addition, severe s.c. edema was observed in all animals receiving substance P. In vivo fluorescence microscopy of the extensor digitorum longus muscle of the affected hind paw revealed enhanced leukocyte-endothelial cell interaction with a significant rise in the number of leukocytes both rolling along and firmly adhering to the wall of postcapillary venules, while saline-exposed animals were free of this local inflammatory response. Muscle cell apoptosis, as assessed by in vivo bisbenzimide staining, terminal deoxynucleotidyl transferase nick end labeling analysis and caspase 3-cleavage, could not be observed in either of the animals. In summary, the present study indicates that substance P is responsible for neurogenic inflammation, including local cell response, edema formation and mechanical pain, while it seems not to contribute to the generation of thermal allodynia.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge