Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis 2005-Nov

Cytogenetic evaluation of arsenic trioxide toxicity in Sprague-Dawley rats.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Anita K Patlolla
Paul B Tchounwou

Mo kle

Abstrè

Acute exposure to arsenic trioxide has been reported to induce death and/or multiple organ damage with symptoms including nausea, vomiting, diarrhea, gastrointestinal hemorrhage, cerebral edema, tachycardia, dysrhythmias and hypovolemic shock. Its toxic effects are due to its ability to bind to sulfhydryl groups of proteins and to inhibit energy production. Although the chronic exposure to arsenic trioxide has been linked to various types of cancer, such as skin, liver, lung, bladder and kidney neoplasms, studies of its carcinogenic potential in animals have not been conclusive. In this study, we investigated the genotoxic potential of arsenic trioxide in bone-marrow cells obtained from Sprague-Dawley rats; using chromosomal aberrations (CA), mitotic index (MI) and micronuclei (MN) formation as the toxicological endpoints. Four groups of six male rats each, weighing approximately 60+/-2 g per rat, were injected intraperitoneally, once a day for 5 days with doses of 5, 10, 15 and 20 mg/kg body weight (BW) of arsenic trioxide dissolved in distilled water. A control group was also made of six animals injected with distilled water without chemical. All the animals were sacrificed at the end of the treatment period. Chromosome and micronuclei preparation was obtained from bone-marrow cells following standard protocols. Arsenic trioxide exposure significantly increased the number of structural chromosomal aberrations, the frequency of micronucleated cells and decreased the mitotic index in treated groups when compared with the control group. Our results demonstrate that arsenic trioxide has a clastogenic/genotoxic potential as measured by the bone-marrow CA and MN tests in Sprague-Dawley rats.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge