Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Materials 2018-Dec

Damage Determination in Ceramic Composites Subject to Tensile Fatigue Using Acoustic Emission.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Gregory Morscher
Zipeng Han

Mo kle

Abstrè

Acoustic emission (AE) has proven to be a very useful technique for determining damage in ceramic matrix composites (CMCs). CMCs rely on various cracking mechanisms which enable non-linear stress⁻strain behavior with ultimate failure of the composite due to fiber failure. Since these damage mechanisms are all microfracture mechanisms, they emit stress waves ideal for AE monitoring. These are typically plate waves since, for most specimens or applications, one dimension is significantly smaller than the wavelength of the sound waves emitted. By utilizing the information of the sound waveforms captured on multiple channels from individual events, the location and identity of the sources can often be elucidated. The keys to the technique are the use of wide-band frequency sensors, digitization of the waveforms (modal AE), strategic placement of sensors to sort the data and acquire important contents of the waveforms pertinent for identification, and familiarity with the material as to the damage mechanisms occurring at prescribed points of the stress history. The AE information informs the damage progression in a unique way, which adds to the understanding of the process of failure for these composites. The AE methodology was applied to woven SiC fiber-reinforced melt-infiltrated SiC matrix composites tested in fatigue (R = 0.1) at different frequencies. Identification of when and where AE occurred coupled with waveform analysis led to source identification and failure progression. For low frequency fatigue conditions, damage progression leading to failure appeared to be due to fiber failure at or near the peak stress of the stress cycle. For higher frequency fatigue conditions, significantly greater amounts of AE were detected compared to low frequency tests a few hours prior to failure. Damage progression leading to failure included AE detected events which occurred on the unloading part of the fatigue cycle near the valley of the stress cycle. These events were associated with 90 tow longitudinal split and shear cracks presumably due to local compressive stresses associated with mating crack surface interactions during unloading. The local region where these occurred was the eventual failure location and the "valley" events appeared to influence the formation of increased local transverse cracking based on AE.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge