Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology and Biochemistry 2018-Sep

Deciphering transcriptome profiles of tetraploid Artemisia annua plants with high artemisinin content.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Jing Xia
Yan Jun Ma
Yue Wang
Jian Wen Wang

Mo kle

Abstrè

To investigate on the effects of autopolyploidization on growth and artemisinin biosynthesis in Artemisia annua, we performed a comprehensive transcriptomic characterization of diploid and induced autotetraploid A. annua. The polyploidization treatment not only enhanced photosynthetic capacity and endogenous contents of indole-3-acetic acid (IAA), abscisic acid (ABA) and jasmonic acid (JA), oxidative stress, but increased the average level of artemisinin in tetraploids from 42.0 to 63.6%. The obvious phenotypic alterations in tetraploids were observed including shorter stems, larger size of stomata and glandular secretory trichomes (GSTs), larger leaves, more branches and roots. A total of 8763 (8.85%) differentially expressed genes (DEGs) were identified in autotetraploids and mainly involved in carbohydrate metabolic processes, cell wall organization and defense responses. Both the up-regulated expression of DNA methylation unigenes and enhanced level of DNA methylation in autotetraploids indicated a possible role of DNA methylation on transcriptomic remodeling and phenotypic alteration. The up-regulated genes were enriched in response to extracellular protein biosynthesis, photosynthesis and hormone stimulus for cell enlargement and phenotypic alteration. The genomic shock induced by chromosome duplication stimulated the expression of transcripts related to oxidative stress, biosynthesis and signal transduction of ABA and JA, and key enzymes in artemisinin biosynthetic pathway, leading to the increased accumulation of artemisinin. This is the first transcriptomic research that identifies DEGs involved in the polyploidization of A. annua. The results provide novel information for understanding the complexity of polyploidization and for further identification of the factors and genes involve in artemisinin biosynthesis.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge