Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Stroke and Cerebrovascular Diseases 2019-May

Dexmedetomidine Protects Against Neurological Dysfunction in a Mouse Intracerebral Hemorrhage Model by Inhibiting Mitochondrial Dysfunction-Derived Oxidative Stress.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Jing Huang
Qiang Jiang

Mo kle

Abstrè

Intracerebral hemorrhage (ICH) is a subtype of stroke with high disability and mortality. Dexmedetomidine (Dex) has been shown to provide neuroprotection in several neurological diseases. The aim of present study was to investigate the effects of Dex on ICH-induced neurological deficits and brain injury and the underlying mechanisms.ICH mouse model was established by intracerebral injection of autologous blood, followed by Dex or vehicle treatment. Neurological function, brain water content, neuronal activity, and oxidative parameters were determined. The protein expressions of peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α), uncoupling protein 2, and manganese-dependent superoxide dismutase were examined by western blotting.Dex administration significantly inhibited ICH-induced the memory impairment, dyskinesia, brain edema, and neuron loss. In addition, ICH-induced the increase in brain oxidative stress level was markedly attenuated after Dex treatment, as evidenced by increased glutathione peroxidase and superoxide dismutase levels and reduced malondialdehyde and nitric oxide levels. Compared with vehicle-treated ICH mice, Dex-treated ICH mice showed significantly decreased intracellular reactive oxygen species (ROS) and mitochondrial ROS (mROS) production in brain, but had no effects on the increased nicotinamide-adenine dinucleotide phosphate oxidase activity. However, stimulation of mROS abrogated the inhibitory effects of Dex on neurological deficits and oxidative stress. The decrease in production of adenosine triphosphate and the expressions of PGC-1α, uncoupling protein 2, and manganese-dependent superoxide dismutase induced by ICH was restored by Dex treatment.Our results reveal that Dex improves ICH-induced neurological deficits and brain injury by inhibiting PGC-1α pathway inactivation and mitochondrial dysfunction-derived oxidative stress.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge