Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Circulation Journal 2007-Feb

Diacylglycerol kinase zeta attenuates pressure overload-induced cardiac hypertrophy.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Mutsuo Harada
Yasuchika Takeishi
Takanori Arimoto
Takeshi Niizeki
Tatsuro Kitahara
Kaoru Goto
Richard A Walsh
Isao Kubota

Mo kle

Abstrè

BACKGROUND

The Gaq protein-coupled receptor (GPCR) signaling pathway, which includes diacylglycerol (DAG) and protein kinase C (PKC), plays a critical role in the development of cardiac hypertrophy and heart failure. DAG kinase (DGK) phosphorylates DAG and controls cellular DAG levels, thus acting as a regulator of GPCR signaling. It has been previously reported that DGK inhibited GPCR agonist-induced activation of the DAG-PKC signaling and subsequent cardiomyocyte hypertrophy, so the purpose of this study was to examine whether DGK modifies the development of cardiac hypertrophy induced by pressure overload.

RESULTS

Thoracic transverse aortic constriction (TAC) was created in transgenic mice with cardiac-specific overexpression of DGKzeta (DGKzeta-TG) and wild-type (WT) mice. Increases in heart weight at 4 weeks after TAC were attenuated in DGKzeta-TG mice compared with WT mice. Increases in interventricular septal thickness, dilatation of the left ventricular cavity, and decreases in left ventricular systolic function in WT mice were observed with echocardiography at 4 weeks after TAC surgery. However, these structural and functional changes after TAC were attenuated in DGKzeta-TG mice. In WT mice, cardiac fibrosis and up-regulation of profibrotic genes, such as transforming growth factor-beta1, collagen type I, and collagen type III, were observed at 4 weeks after TAC. However, cardiac fibrosis and gene induction of type I and type III collagens, but not transforming growth factor-beta1, were blocked in DGKzeta-TG mice.

CONCLUSIONS

These results are the first in vivo evidence that DGKzeta suppresses cardiac hypertrophy and fibrosis and prevents impaired left ventricular systolic function caused by pressure overload.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge