Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Physiology and Molecular Biology of Plants 2019-Jul

Differential characterization of physiological and biochemical responses during drought stress in finger millet varieties.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Asunta Mukami
Alex Ngetich
Cecilia Mweu
Richard Oduor
Mutemi Muthangya
Wilton Mbinda

Mo kle

Abstrè

Drought is the most perilous abiotic stress that affects finger millet growth and productivity worldwide. For the successful production of finger millet, selection of drought tolerant varieties is necessary and critical stages under drought stress, germination and early seedling growth, ought to be fully understood. This study investigated the physiological and biochemical responses of six finger millet varieties (GBK043137, GBK043128, GBK043124, GBK043122, GBK043094 and GBK043050) under mannitol-induced drought stress. Seeds were germinated in sterile soil and irrigated with various concentrations of mannitol (200, 400 and 600 mM) for 2 weeks. In a comparative analysis relative water content (RWC), chlorophyll, proline and malondialdehyde (MDA) contents were measured to obtain the physiological and biochemical characteristics of drought stress. The results showed that increased levels of drought stress seriously decreased germination and early seedling growth of finger millet varieties. However, root growth was increased. In addition, exposition to drought stress triggered a significant decrease in relative water content and chlorophyll content reduction, and the biochemical parameters assay showed less reduction in RWC. Furthermore, oxidative damage indicating parameters, such as proline concentration and MDA content, increased. Varieties GBK043137 and GBK043094 were less affected by drought than the other varieties as shown by significant changes in their physiological parameters. Our findings reveal the differences between the physiological and biochemical responses of finger millet to drought and are vital for breeding and selecting drought tolerant varieties of finger millet. Further, genomic and molecular investigations need to be undertaken to gain a deeper insight into the detailed mechanisms of drought tolerance in finger millet.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge