Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Hazardous Materials 2018-Jun

Differential transcriptome modulation leads to variation in arsenic stress response in Arabidopsis thaliana accessions.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Tapsi Shukla
Ria Khare
Smita Kumar
Deepika Lakhwani
Deepika Sharma
Mehar Hasan Asif
Prabodh Kumar Trivedi

Mo kle

Abstrè

Arsenic (As) is a ubiquitous metalloid and a health hazard to millions of people worldwide. The presence of As in groundwater poses a threat as it not only affects crop productivity but also contaminates food chain. Therefore, it is essential to understand molecular mechanisms underlying uptake, transport and accumulation of As in plants. In recent past, natural variation in Arabidopsis thaliana has been utilized to understand molecular and genetic adaptation under different stresses. In this study, responses of Arabidopsis accessions were analyzed at biochemical and molecular levels towards arsenate [As(V)] stress. On the basis of reduction in root length, accessions were categorized into tolerant and sensitive ones towards As(V). Root length analysis led to the identification of Col-0 (<10% reduction) and Slavi-1 (>60% reduction) as the most tolerant and sensitive accessions, respectively. Comparative genome-wide expression analysis revealed differential expression of 168 and 548 genes in Col-0 and Slavi-1, respectively, with 120 common differentially expressed genes. A number of genes associated with defense and stress-response, transport system, regulatory mechanisms and biochemical processes showed differential expression in contrasting accessions. The study provides an insight into the molecular mechanisms associated with stress response and processes involved in adaptation strategies towards As stress.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge