Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Photosynthesis Research 2005-Sep

Effects of chlorophyllide a oxygenase overexpression on light acclimation in Arabidopsis thaliana.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Ryouichi Tanaka
Ayumi Tanaka

Mo kle

Abstrè

Land plants change the compositions of light-harvesting complexes (LHC) and chlorophyll (Chl) a/b ratios in response to the variable light environments which they encounter. In this study, we attempted to determine the mechanism which regulates Chl a/b ratios and whether the changes in Chl a/b ratios are essential in regulation of LHC accumulation during light acclimation. We hypothesized that changes in the mRNA levels for chlorophyll a oxygenase (CAO) involved in Chl b biosynthesis are an essential part of light response of Chl a/b ratios and LHC accumulation. We also examined the light-intensity dependent response of CAO-overexpression and wild-type Arabidopsis thaliana plants. When wild-type plants were acclimated from low-light (LL) to high-light (HL) conditions, CAO mRNA levels decreased and the Chl a/b ratio increased. In transgenic plants overexpressing CAO, the Chl a/b ratio remained low under HL conditions; thereby suggesting that changes in the CAO mRNA levels are necessary for those in Chl a/b ratios upon light acclimation. Under HL conditions, the accumulation of Lhcb1, Lhcb3 and Lhcb6 was enhanced in plants overexpressing CAO. On the contrary, in a CAO-deficient mutant, chlorina 1-1, theaccumulation of Lhcb1, Lhcb2, Lhcb3, Lhcb6 and Lhca4 was reduced. In comparison to wild-type, beta-carotene levels were reduced in CAO-overexpressing plants, while they were elevated in chlorina 1-1 mutants. These results imply that the transcriptional control of CAO is a part of the regulatory mechanism for the accumulation of a distinct set of LHC proteins upon light acclimation.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge