Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1984-Feb

Effects of the Proline Analog l-Thiazolidine-4-carboxylic Acid on Proline Metabolism.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
T E Elthon
C R Stewart

Mo kle

Abstrè

The effect of various proline analogs on proline oxidation in mitochondria isolated from etiolated barley (Hordeum vulgare) shoots was investigated. Of the analogs tested, only l-thiazolidine-4-carboxylic acid (T4C) was an effective inhibitor. T4C (1 millimolar) inhibited proline (10 millimolar) -dependent 0(2) uptake an average of 67%. T4C was also oxidized to some degree (12.9 nanoatoms oxygen per minute per milligram protein for 10 millimolar). The effect of T4C on the oxidation of other mitochondrial substrates was also tested. T4C inhibited big up tri, open(1)-pyrrolidine-5-carboxylic acid-dependent oxygen uptake slightly (13%), the oxidation of malate plus pyruvate even less (6%), and stimulated the oxidation of succinate (+11%), exogenous NADH (+19%), and citrate (+20%). Thus, inhibition by T4C in mitochondria is relatively specific to proline oxidation. T4C was found to inhibit proline dehydrogenase and not the transport of proline into the matrix.The effect of T4C on proline metabolism in detached green barley leaves was investigated. T4C inhibited proline oxidation in turgid leaves, increasing the proline content of these leaves slightly. In wilted leaves (that are synthesizing proline rapidly), T4C inhibited proline synthesis, which resulted in a decrease in the proline content of the leaves. big up tri, open(1)-pyrrolidine-5-carboxylic acid reductase (the last enzyme in proline synthesis) was not inhibited by T4C, and thus T4C's influence is prior to that step of the synthetic pathway. T4C had no influence on the incorporation of proline into protein.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge