Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biological Chemistry 2010-Mar

Enhanced translation of heme oxygenase-2 preserves human endothelial cell viability during hypoxia.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Jeff Z He
J J David Ho
Sheena Gingerich
David W Courtman
Philip A Marsden
Michael E Ward

Mo kle

Abstrè

Heme oxygenases (HOs) -1 and -2 catalyze the breakdown of heme to release carbon monoxide, biliverdin, and ferrous iron, which may preserve cell function during oxidative stress. HO-1 levels decrease in endothelial cells exposed to hypoxia, whereas the effect of hypoxia on HO-2 expression is unknown. The current study was carried out to determine if hypoxia alters HO-2 protein levels in human endothelial cells and whether this enzyme plays a role in preserving their viability during hypoxic stress. Human umbilical vein endothelial cells (HUVECs), human aortic endothelial cells (HAECs), and human blood outgrowth endothelial cells were exposed to 21% or 1% O(2) for 48 or 16 h in the presence or absence of tumor necrosis factor-alpha (10 ng/ml) or H(2)O(2) (100 microm). In all three endothelial cell types HO-1 mRNA and protein levels were decreased following hypoxic incubation, whereas HO-2 protein levels were unaltered. In HUVECs HO-2 levels were maintained during hypoxia despite a 57% reduction in steady-state HO-2 mRNA level and a 43% reduction in total protein synthesis. Polysome profiling revealed increased HO-2 transcript association with polysomes during hypoxia consistent with enhanced translation of these transcripts. Importantly, inhibition of HO-2 expression by small interference RNA increased oxidative stress, exacerbated mitochondrial membrane depolarization, and enhanced caspase activation and apoptotic cell death in cells incubated under hypoxic but not normoxic conditions. These data indicate that HO-2 is important in maintaining endothelial viability and may preserve local regulation of vascular tone, thrombosis, and inflammatory responses during reductions in systemic oxygen delivery.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge