Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Molecular Biology 1996-Apr

Enhancement of hammerhead ribozyme catalysis by glyceraldehyde-3-phosphate dehydrogenase.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
M Sioud
L Jespersen

Mo kle

Abstrè

A specific tumour necrosis factor alpha ribozyme (TNF-alpha-Rz) binding activity has been purified and identified by N-terminal microsequencing as the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The purified protein as well as commercial GAPDH binds tightly to TNF-alpha ribozyme compared to a variety of other ribozymes and RNAs. Binding of GAPDH to the TNF-alpha-Rz and its derivatives was inhibited by NAD+ and ATP, suggesting that the GAPDH Rossmann fold structure is a part of the ribozyme binding site. Interestingly, GAPDH increased the in vitro cleavage rates of hammerhead ribozymes by up to 25-fold, while no significant stimulation was observed with the lactate dehydrogenase (LDH). This effect was found to be due to the unfolding activity of GAPDH. In fact, pulse-chase experiments demonstrate directly that GAPDH has the capacity to accelerate the ribozyme/substrate association, especially of ribozymes and/or substrates whose predicted secondary structure might interfere with the association step. Under our conditions, the presumed unfolding activity of GAPDH also enhances the turnover of ribozymes by increasing the rate of product dissociation, although only for short cleavage products. Longer duplexes required more incubation time to dissociate. In vitro non-specific interaction of the GAPDH with hammerhead ribozymes and RNA substrates was found to be adequate for the cleavage enhancement effect to occur. However, an analysis of the ability of various prototypical ribozymes to inhibit the expression of interleukin-2 suggests that the addition of a sequence having a high affinity for GAPDH improves the efficacy of ribozymes in the cells. Thus the characterization of cellular proteins with unfolding activity, which specifically bind to hammerhead ribozyme, should facilitate the design of a more effective ribozyme in vivo.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge