Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology and Biochemistry 2014-Oct

Evaluation of the anti-nitrative effect of plant antioxidants using a cowpea Fe-superoxide dismutase as a target.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Estibaliz Urarte
Aaron C Asensio
Edurne Tellechea
Laura Pires
Jose F Moran

Mo kle

Abstrè

Nitric oxide cytotoxicity arises from its rapid conversion to peroxynitrite (ONOO(-)) in the presence of superoxide, provoking functional changes in proteins by nitration of tyrosine residues. The physiological significance of this post-translational modification is associated to tissue injury in animals, but has not been yet clarified in plants. The objective of this study was to establish new approaches that could help to understand ONOO(-) reactivity in plants. A recombinant Fe-superoxide dismutase from cowpea (Vigna unguiculata (L.) Walp.), rVuFeSOD, was the target of the ONOO(-)-generator SIN-1, and the anti-nitrative effect of plant antioxidants and haemoglobins was tested in vitro. Nitration on rVuFeSOD was evaluated immunochemically or as the loss of its enzymatic activity. This assay proved to be useful to test a variety of plant compounds for anti-nitrative capacity. Experimental data confirmed that rice (Oryza sativa L.) haemoglobin-1 (rOsHbI) and cowpea leghaemoglobin-2 exerted a protective function against ONOO(-) by diminishing nitration on rVuFeSOD. Both plant haemoglobins were nitrated by SIN-1. The chelator desferrioxamine suppressed nitration in rOsHbI, indicating that Fe plays a key role in the reaction. The removal of the haem moiety in rOsHbI importantly suppressed nitration, evidencing that this reaction may be self-catalyzed. Among small antioxidants, ascorbate remarkably decreased nitration in all tests. The phenolic compounds caffeic acid, gallic acid, pyrogallol, 4-hydroxybenzoic acid and the flavonoid gossypin also diminished tyrosine nitration and protected rVuFeSOD to different extents. It is concluded that small plant antioxidants, especially ascorbate, and haemoglobins may well play key roles in ONOO(-) homeostasis in vivo.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge