Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Frontiers in Bioscience - Landmark 2004-Jan

Fever in systemic inflammation: roles of purines.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Alexander V Gourine
Nicholas Dale
Valery N Gourine
K Michael Spyer

Mo kle

Abstrè

Extracellular purine nucleotide and nucleoside signalling molecules, such as ATP and adenosine, acting through specific receptors (P2 and P1, respectively) play significant roles in the mechanisms underlying the febrile response. A variety of P2 and P1 receptor subunits have been identified in the hypothalamus, the area of the brain that orchestrates the febrile response. Importantly, both ATP and adenosine have been shown to modulate release and/or action of cytokines that are implicated in fever, as well as to be involved in the central mechanisms of cardiovascular and respiratory control. Our data indicate that at the level of the anterior hypothalamus extracellular ATP is involved in the control of the development of fever. A population of warm-sensitive neurones in the anterior hypothalamus is likely to be the site of action of ATP on body temperature. ATP-induced cytokine release does not appear to play a significant role in the hypothalamic mechanisms leading to the development of the febrile response. However, the blockade of fever by P2 receptor antagonists given systemically suggests that ATP-mediated signalling may play a role in the release of pyrogenic cytokines in the periphery. At the level of the anterior hypothalamus adenosine appears to be released tonically, and acts to maintain body temperature under afebrile conditions. There is also evidence that adenosine-mediated signalling may play a role in the hypothalamic mechanisms controlling the degree of body temperature increase during fever. Our investigations have identified possible mechanisms by which purines modulate the febrile response. The actions of purines on body temperature during fever are most likely "site specific" (brain vs. periphery), may or may not involve their effect on cytokine release and/or action, and are likely to involve P2 and P1 receptors of different subtypes. Further extensive studies are needed to elucidate these mechanisms in greater detail and may lead to the development of new approaches for modifying febrile, cytokine and acute-phase responses to infection.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge