Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Disease 2012-Mar

First Report of a Soft Rot of Philodendron 'Con-go' in China Caused by Dickeya dieffenbachiae.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
B Lin
H Shen
J Zhou
X Pu
Z Chen
J Feng

Mo kle

Abstrè

Philodendron is a popular foliage plant cultivated in interiorscapes of homes, offices, and malls throughout China. A severe outbreak of a soft rot of Philodendron 'Con-go' occurred in Guangzhou, China from 2010 to 2011. The disease was characterized by leaf infections starting as pinpoint spots that are water soaked and yellow to pale brown. The lesions are sometimes surrounded by a diffuse yellow halo. When the humidity is high and temperatures are warm to hot, the spots expand rapidly, becoming slimy, irregular, and sunken with light tan centers, darker brown borders, and diffused yellow margins and may involve the entire leaf in a few days. An invasion of the midrib and larger veins by the causal bacterium often results in advancement into the petiole and stem. A survey of three areas of production of Philodendron 'Con-go' (5 ha) in Guangzhou revealed that 91% of the fields were affected at an incidence ranging from 15 to 30%. Of 41 bacterial isolates obtained from lesions, three were selected randomly for further characterization. All strains were gram negative, negative for oxidase and positive for catalase and tryptophanase (indole production), and utilized citrate, tartrate, malonate, glucose, sucrose, fructose, and maltose but not glucopyranoside, trehalose, or palatinose. Biolog analysis (version 4.20.05, Hayward, CA) identified the isolates as Pectobacterium chrysanthemi (SIM 0.804 to 0.914). According to Samson et al. (1), it was renamed as a Dickeya sp. PCR was performed on the 16S rDNA gene with primers 27f and 1495r (3) and 1,423 bp of the 16S rDNA gene (GenBank No. JN709491) showed 99% identity to P. chrysanthemi (GenBank No. AF373202), and 98% to Dickeya dieffenbachiae (GenBank No. JF311644). Additionally, the gyrB gene was amplified with primers gyrB-f1 (5'-atgtcgaattcttatgactcctc-3') and gyrB-r1 (5'-tcaratatcratattcgcygctttc-3') designed based on all the submitted gyrB gene sequences of Dickeya spp. The dnaX gene was amplified with primers dnaXf and dnaXr (2). The products were sequenced and phylogeny analyses were performed by means of MEGA 5.05. Results showed that the gyrB and the dnaX genes of the strains were 98% homologous to those of D. dieffenbachiae (GenBank Nos. JF311652 and GQ904757). Therefore, on the basis of phylogenetic trees of the 16S rDNA, gyrB, and dnaX gene sequences, the bacterial isolate named PC1 is related to D. dieffenbachiae (100% bootstrap values). Pathogenicity of each of the three strains on Philodendron 'Con-go' was confirmed by injecting 60 50-day-old seedlings each with 0.1 ml of the isolate suspension (108 CFU/ml) into the leaves. Another 60 were injected with sterile water to serve as the control treatment. Plants were enclosed in plastic bags and returned to the greenhouse under 50% shade at 32°C day and 28°C night temperatures with high humidity. After 72 h, all the injected plants started to show symptoms similar to those observed on field plants, but no symptoms appeared on the control plants. The reisolates were identical to the inoculated strains in biochemical characteristics. Bacteria characteristic of the inoculated strains were not reisolated from the control plants. To our knowledge, this is the first report of D. dieffenbachiae causing soft rot of Philodendron 'Con-go' in China. References: (1) R. Samson et al. Evol. Microbiol. 55:1415, 2005. (2) M. Sławiak et al. Eur. J. Plant Pathol. 125:245, 2009. (3) W. G. Weisbury et al. J. Bacteriol. 173:697, 1991.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge