Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
American Journal of Physiology - Heart and Circulatory Physiology 2006-Oct

First molecular evidence that inositol trisphosphate signaling contributes to infarct size reduction with preconditioning.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Karin Przyklenk
Michelle Maynard
Peter Whittaker

Mo kle

Abstrè

Considerable attention has focused on the role of protein kinase C (PKC) in triggering the profound infarct-sparing effect of ischemic preconditioning (PC). In contrast, the involvement of inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)], the second messenger generated in parallel with the diacylglycerol-PKC pathway, remains poorly understood. We hypothesized that, if Ins(1,4,5)P(3) signaling [i.e., release of Ins(1,4,5)P(3) and subsequent binding to Ins(1,4,5)P(3) receptors] contributes to PC-induced cardioprotection, then the reduction of infarct size achieved with PC would be attenuated in mice that are deficient in Ins(1,4,5)P(3) receptor protein. To test this concept, hearts were harvested from 1) B6C3Fe-a/a-Itpr-1(opt+/-)/J mutants displaying reduced expression of Ins(1,4,5)P(3) receptor-1 protein, 2) Itpr-1(opt+/+) wild types from the colony, and 3) C57BL/6J mice. All hearts were buffer-perfused and randomized to receive two 5-min episodes of PC ischemia, pretreatment with d-myo-Ins(1,4,5)P(3) [sodium salt of native Ins(1,4,5)P(3)], the mitochondrial ATP-sensitive K(+) channel opener diazoxide, or no intervention (controls). After the treatment phase, all hearts underwent 30-min global ischemia followed by 2 h of reperfusion, and infarct size was delineated by tetrazolium staining. In both wild-type and C57BL/6J cohorts, area of necrosis in hearts that received PC, d-myo-Ins(1,4,5)P(3), and diazoxide averaged 28-35% of the total left ventricle (LV), significantly smaller than the values of 52-53% seen in controls (P < 0.05). In contrast, in Itpr-1(opt+/-) mutants, protection was only seen with diazoxide: neither PC nor d-myo-Ins(1,4,5)P(3) limited infarct size (52-58% vs. 56% of the LV in mutant controls). These data provide novel evidence that Ins(1,4,5)P(3) signaling contributes to infarct size reduction with PC.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge