Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Experimental Botany 2004-Dec

Genetic analysis of the function of major leaf proteases in barley (Hordeum vulgare L.) nitrogen remobilization.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Litao Yang
Suzanne Mickelson
Deven See
Tom K Blake
Andreas M Fischer

Mo kle

Abstrè

Most of the nitrogen harvested with the seeds of annual crops is remobilized and retranslocated within the plant between anthesis and plant death. While chloroplasts contain most of the reduced nitrogen present in photosynthetically active leaf cells, the (major) pathway(s) involved in the degradation of their proteins prior to the retranslocation of the resulting amino acids are unknown. In this study, a population of 146 recombinant inbred barley lines (RIL), derived from the cross between two varieties with a highly inheritable difference in grain protein concentration, was used to map quantitative trait loci (QTL) for leaf amino-, carboxy- and endopeptidase activities relative to previously determined QTL for grain protein, leaf N storage, and remobilization. The results strongly suggested that major endopeptidases, assayed at both acidic and slightly alkaline pH values (favouring vacuolar and extravacuolar enzymes, respectively) are not instrumental in leaf N remobilization or the control of grain protein accumulation. Similarly, QTL determined for aminopeptidases (relative to QTL for N remobilization) indicated no functional role for the enzyme(s) assayed in plant N recycling. By contrast, careful evaluation of QTL data suggested that one or several carboxypeptidase isoenzymes may be involved in this physiologically and economically important process. As these proteases (in contrast to aminopeptidases) have previously been localized in vacuoles, this result appears intriguing. These data, while shedding new light on an old problem, also indicate that the described approach may prove useful in evaluating the functional roles of additional (not assayed in this study) proteolytic systems in whole-plant nitrogen recycling.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge