Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Planta 2018-Sep

Genetic control of fatty acid composition in coconut (Cocos nucifera), African oil palm (Elaeis guineensis), and date palm (Phoenix dactylifera).

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Yong Xiao
Wei Xia
Annaliese S Mason
Zengying Cao
Haikuo Fan
Bo Zhang
Jinlan Zhang
Zilong Ma
Ming Peng
Dongyi Huang

Mo kle

Abstrè

UNASSIGNED

Predominant gene isoforms and expression bias in lipid metabolism pathways are highly conserved between oil-producing Arecaceae crop species coconut and oil palm, but diverge in non-oil-producing species date palm. Coconut (Cocos nucifera), African oil palm (Elaeis guineensis) and date palm (Phoenix dactylifera) are three major crop species in the Arecaceae family for which genome sequences have recently become available. Coconut and African oil palm both store oil in their endosperms, while date palm fruits contain very little oil. We analyzed fatty acid composition in three coconut tissues (leaf, endosperm and embryo) and in two African oil palm tissues (leaf and mesocarp), and identified 806, 840 and 848 lipid-related genes in 22 lipid metabolism pathways from the coconut, African oil palm and date palm genomes, respectively. The majority of lipid-related genes were highly homologous and retained in homologous segments between the three species. Genes involved in the conversion of pyruvate to fatty acid had a five-to-sixfold higher expression in the coconut endosperm and oil palm mesocarp than in the leaf or embryo tissues based on Fragments Per Kilobase of transcript per Million mapped reads values. A close evolutionary relationship between predominant gene isoforms and high conservation of gene expression bias in the lipid and carbohydrate gene metabolism pathways was observed for the two oil-producing species coconut and oil palm, differing from that of date palm, a non-oil-producing species. Our results elucidate the similarities and differences in lipid metabolism between the three major Arecaceae crop species, providing important information for physiology studies as well as breeding for fatty acid composition and oil content in these crops.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge