Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cardiovascular Diabetology 2015-Jan

Glyceraldehyde-derived pyridinium (GLAP) evokes oxidative stress and inflammatory and thrombogenic reactions in endothelial cells via the interaction with RAGE.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Takanori Matsui
Eriko Oda
Yuichiro Higashimoto
Sho-ichi Yamagishi

Mo kle

Abstrè

BACKGROUND

We have previously shown that serum levels of glyceraldehyde-derived advanced glycation end products (Gly-AGEs) are elevated under oxidative stress and/or diabetic conditions and associated with insulin resistance, endothelial dysfunction and vascular inflammation in humans. Further, Gly-AGEs not only evoke oxidative and inflammatory reactions in endothelial cells (ECs) through the interaction with a receptor for AGEs (RAGE), but also mimic vasopermeability effects of AGE-rich serum purified from diabetic patients on hemodialysis. These observations suggest that Gly-AGE-RAGE system might be a therapeutic target for vascular complications in diabetes. However, since incubation of glyceraldehyde with proteins will generate a large number of structurally distinct AGEs, it remains unclear what type of AGE structures could mediate the deleterious effects of Gly-AGEs on ECs.

OBJECTIVE

Therefore, in this study, we examined (1) whether glyceraldehyde-derived pyridinium (GLAP), one of the Gly-AGEs generated by the incubation of lysine with glyceraldehyde, elicited reactive oxygen species (ROS) generation and inflammatory and thrombogenic gene expression in human umbilical vein ECs (HUVECs) via the interaction with RAGE and (2) if DNA aptamers raised against Gly-AGEs or GLAP (AGE-aptamer or GLAP-aptamer) inhibited the binding of GLAP to RAGE and subsequently suppressed the harmful effects of GLAP on HUVECs.

RESULTS

GLAP stimulated ROS generation in a bell-shaped manner; GLAP at 10 μg/ml increased ROS generation in HUVECs by 40%, which was blocked by the treatment with RAGE-antibody (RAGE-Ab). Ten μg/ml GLAP significantly up-regulated mRNA levels of RAGE, monocyte chemoattractant protein-1, intercellular adhesion molecule-1, vascular cell adhesion molecule-1 and plasminogen activator inhibitor-1 in HUVECs, which were also suppressed by RAGE-Ab. AGE-aptamer or GLAP-aptamer significantly blocked these deleterious effects of GLAP on HUVECs. Moreover, quartz crystal microbalance analyses revealed that GLAP actually bound to RAGE and that AGE-aptamer or GLAP-aptamer inhibited the binding of GLAP to RAGE.

CONCLUSIONS

The present study suggests that GLAP might be a main glyceraldehyde-related AGE structure in Gly-AGEs that bound to RAGE and subsequently elicited ROS generation and inflammatory and thrombogenic reactions in HUVECs. Blockade of the GLAP-RAGE interaction by AGE-aptamer or GLAP-aptamer might be a novel therapeutic strategy for preventing vascular injury in diabetes.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge