Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Shock 2012-Nov

Glycocalyx degradation causes microvascular perfusion failure in the ex vivo perfused mouse lung: hydroxyethyl starch 130/0.4 pretreatment attenuates this response.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Mike Sebastian Strunden
Anika Bornscheuer
Anke Schuster
Rainer Kiefmann
Alwin E Goetz
Kai Heckel

Mo kle

Abstrè

The endothelial glycocalyx (GLX) is pivotal to vascular barrier function. We investigated the consequences of GLX degradation on pulmonary microvascular perfusion and, prompted by evidence that hydroxyethyl starch (HES) improves microcirculation, studied the effects of two HES preparations during GLX diminution. C57 BL/6 black mice lungs were explanted and perfused with 1-mL/min buffer solution containing autologous erythrocytes (red blood cells) at a hematocrit of 5%. Microvessel perfusion was quantified by video fluorescence microscopy at 0 and 90 min. To register interstitial edema, alveolar septal width was quantified. Pulmonary artery pressure (PAP), airway pressure, and left atrial pressure were recorded continuously. Lungs were randomly assigned to four groups (each n = 5): (i) control: no treatment, (ii) HEP1: heparinase I (1 mU/mL) was injected for GLX degradation, (iii) HES 130, and (iv) HES 200: one third of perfusion fluid was exchanged for 6% HES 130/0.4 or 10% HES 200/0.5 before GLX degradation. Analysis of variance on ranks and pairwise multiple comparisons were used for statistics, P < 0.05. Compared with control, GLX degradation effected perfusion failure in microvessels, increased PAP, and facilitated interstitial edema formation after a 90-min period of perfusion. In contrast to HES 200/0.5, pretreatment with HES 130/0.4 attenuated all of these consequences. Sequelae of GLX degradation in lung include perfusion failure in microvessels, interstitial edema formation, and increase in PAP. We assume that these effects are a consequence of vascular barrier dysfunction. Beneficial effects of HES 130/0.4 are presumably a result of its lower red blood cell bridging capacity compared with HES 200/0.5.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge