Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Plant-Microbe Interactions 2019-Sep

HpaP sequesters HrpJ, an essential component of Ralstonia solanacearum virulence that triggers necrosis in Arabidopsis.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Fabien Lonjon
David Rengel
Fabrice Roux
Céline Henry
Marie Turner
Aurélie Ru
Narjes Razavi
Cyrus Sabbagh
Stephane Genin
Fabienne Vailleau

Mo kle

Abstrè

The Gram-negative bacterium Ralstonia solanacearum, the causal agent of bacterial wilt, is a worldwide major crop pathogen whose virulence strongly relies on a type III secretion system (T3SS). This extracellular apparatus allows the translocation of proteins, called type III effectors (T3Es), directly into the host cells. To date, very few data are available in plant pathogenic bacteria concerning the role played by type III-secretion regulators at the post-translational level. We have demonstrated that HpaP, a putative type III secretion substrate specificity switch (T3S4) protein of R. solanacearum controls T3E secretion. To better understand the role of HpaP on type III secretion control, we analyzed the secretomes of the GMI1000 wild-type strain as well as the hpaP mutant using mass spectrometry experiment (LC-MS/MS). The secretomes of both strains appeared to be very similar and highlighted the modulation of the secretion of few type III substrates. Interestingly, only one type III associated protein, HrpJ, was identified as specifically secreted by the hpaP mutant. HrpJ appeared to be an essential component of the T3SS, essential for type III secretion and pathogenicity. We further showed that HrpJ is specifically translocated in planta by the hpaP mutant and that HrpJ can physically interact with HpaP. Moreover, confocal microscopy experiments demonstrated a cytoplasmic localization for HrpJ once in planta. When injected in Arabidopsis thaliana leaves, HrpJ is able to trigger a necrosis on 16 natural accessions. A Genome-Wide Association (GWA) mapping revealed a major association peak with 12 highly significant SNPs located on a plant acyl-transferase.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge