Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemical Journal 2008-Sep

Identification of essential amino acid residues in a sterol 8,7-isomerase from Zea mays reveals functional homology and diversity with the isomerases of animal and fungal origin.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Alain Rahier
Sylvain Pierre
Geneviève Riveill
Francis Karst

Mo kle

Abstrè

A putative 8,7SI (sterol 8,7-isomerase) from Zea mays, termed Zm8,7SI, has been isolated from an EST (expressed sequence tag) library and subcloned into the yeast erg2 mutant lacking 8,7SI activity. Zm8,7SI restored endogenous ergosterol synthesis. An in vitro enzymatic assay in the corresponding yeast microsomal extract indicated that the preferred Delta(8)-sterol substrate possesses a single C4alpha methyl group, in contrast with 8,7SIs from animals and fungi, thus reflecting the diversity in the structure of their active site in relation to the distinct sterol biosynthetic pathways. In accordance with the proposed catalytic mechanism, a series of lipophilic ammonium-ion-containing derivatives possessing a variety of structures and biological properties, potently inhibited the Zm8,7SI in vitro. To evaluate the importance of a series of conserved acidic and tryptophan residues which could be involved in the Zm8,7SI catalytic mechanism, 20 mutants of Zm8,7SI were constructed as well as a number of corresponding mutants of the Saccharomyces cerevisiae 8,7SI. The mutated isomerases were assayed in vivo by sterol analysis and quantification of Delta(5,7)-sterols and directly in vitro by examination of the activities of the recombinant Zm8,7SI mutants. These studies have identified His(74), Glu(78), Asp(107), Glu(121), Trp(66) and Trp(193) that are required for Zm8,7SI activity and show that binding of the enzyme-substrate complex is impaired in the mutant T124I. They underline the functional homology between the plant and animal 8,7SIs on one hand, in contrast with the yeast 8,7SI on the other hand, in accordance with their molecular diversity and distinct mechanisms.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge