Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Pharmacology and Experimental Therapeutics 1994-Oct

Induction of heart heme oxygenase-1 (HSP32) by hyperthermia: possible role in stress-mediated elevation of cyclic 3':5'-guanosine monophosphate.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
J F Ewing
V S Raju
M D Maines

Mo kle

Abstrè

Presently we have investigated the carbon monoxide generating capacity of the cardiovascular system under normal and stress conditions by examining the microsomal heme oxygenase system at the transcript, protein and activity levels; and have assessed response of heart nitric oxide (NO) synthase activity and cyclic GMP levels to stress. Heme oxygenase (HO) isozymes, HO-1 (HSP32) and HO-2, catalyze the rate limiting step in the only known pathway in eukaryotes for the generation of the potential cellular message, carbon monoxide, and the antioxidant, bilirubin. We show expression of HO-1 and HO-2 at both the transcription and protein levels under normal conditions in the heart and descending aorta, and demonstrate the sensitivity of only the HO-1 isozyme to heat stress in these tissues. The ratio of the two HO-2 homologous transcripts (approximately 1.9 and 1.3 Kb) present in the atrium, ventricles and descending aorta and their levels were not altered by hyperthermia (42 degrees C, 20 min) when measured 1 or 6 hr after treatment. In contrast, hyperthermia caused a rapid, robust and coordinate increase of approximately 10- to 32-fold in the approximately 1.8-Kb HO-1 mRNA in these tissues when measured 1-hr post-treatment. Hyperthermia also caused a significant increase in both HO-1 protein and heme degradation capacity in the heart. Furthermore, the induction of HO-1 protein in the heart was accompanied by a significant elevation in tissue cyclic GMP level first detected 1-hr post-treatment and was sustained 6 hr after heat shock.(ABSTRACT TRUNCATED AT 250 WORDS)

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge