Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Agricultural and Food Chemistry 2007-Jul

Inhibition of reactive nitrogen species in vitro and ex vivo by trypsin inhibitor from sweet potato 'Tainong 57' storage roots.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Guan-Jhong Huang
Ming-Jyh Sheu
Hsien-Jung Chen
Yuan-Shiun Chang
Yaw-Huei Lin

Mo kle

Abstrè

Peroxynitrite (ONOO-), formed from a reaction of superoxide and nitric oxide, is one of the most potent cytotoxic species known to oxidize cellular constituents including essential proteins, lipids, and DNA. ONOO- induces cellular and tissue injury, resulting in several human diseases such as Alzheimer's disease, atherosclerosis, and stroke. Due to the lack of endogenous enzymes responsible for ONOO- scavenging activity, finding a specific ONOO- scavenger is of considerable importance. In this study, the ability of trypsin inhibitor (TI), isolated from sweet potato storage roots (SPTI), to scavenge *ON and ONOO- was investigated. The data obtained show that TI generated a dose-dependent inhibition on production of nitrite and superoxide radicals. The IC50 value of TI on superoxide radical was 143.2 +/- 4.29 microg/mL. SOD activity staining was used to confirm SOD activity of SPTI. SPTI also caused a dose-dependent inhibition of the oxidation of dihydrorhodamine 123 (DHR) by peroxynitrite. A calculated IC50 value of 809.1 +/- 32.36 microg/mL was obtained on the inhibition of peroxynitrite radical. Spectrophotometric analyses revealed that TI suppressed the formation of ONOO--mediated tyrosine nitration through an electron donation mechanism. In further studies, TI also showed a significant ability to inhibit nitration of bovine serum albumin (BSA) in a dose-dependent manner. In vivo TI inhibited lipopolysaccharide-induced nitrite production in macrophages in a concentration-dependent manner with an IC50 value of 932.8 +/- 29.85 microg/mL. The present study suggested that TI had an efficient reactive nitrogen species scavenging ability. TI might be a potential effective NO and ONOO- scavenger useful for the prevention of NO- and ONOO--involved diseases.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge