Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cellular and Molecular Neurobiology 2003-Oct

Isocortical hyperemia and allocortical inflammation and atrophy following generalized convulsive seizures of thalamic origin in the rat.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Sima Mraovitch

Mo kle

Abstrè

1. Generalized convulsive seizures can be elicited by a single unilateral microinjection of the cholinergic muscarinic agonist, carbachol, into the specific sites of the thalamus including ventral posterolateral and the reticular thalamic nuclei. The implication of the thalamic specific and reticular neurons is reviewed and discussed. 2. On the basis of the c-fos regional expression and well-known efferent and afferent pathways linking these regions, a neuronal network relating the limbic, thalamo-striatal-cortical, and central autonomic systems, was constructed. 3. The pattern of Fos immunoreactivity associated with long-lasting isocortical vasodilatation elicited by generalized convulsive seizures in anesthetized rat following cholinergic stimulation of the thalamus can be attributed to both the electrocortical activity and the long-lasting increase in cortical blood flow. We propose that the sustained cerebral cortical blood flow response during convulsive epileptic seizures may implicate intracerebral vasodilatory and vasoconstrictory neural mechanisms. Double-labeled NADPH-d and Fos-positive neurons implicated in maintaining the sustained isocortical vasodilatory response were found in the anterior lateral hypothalamic area. Inhibition of these neurons prevented the increase in cortical blood flow despite an increased metabolic demand manifested by the ictal electrocortical activity. 4. Medial temporal lobe atrophy, including hippocampus, amygdala, and parahippocampal gyrus (piriform and entorhinal cortices) are the most common pathology in man. However the origin of medial lobe atrophy remain uncertain. Our results provide evidence that the allocortical microvascular inflammation may be in origin of the neurovascular degenerative processes leading to atrophy.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge