Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biotechnology and Bioengineering 1989-Jun

Kinetic aspects of the bioconversion of L-tyrosine into L-DOPA by cells of Mucuna pruriensL. Entrapped in different matrices.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
N Pras
P G Hesselink
J ten Tusscher
T M Malingré

Mo kle

Abstrè

Plant cells of Mucuna pruriens L. entrapped In calcium alginate, calcium pectinate, agarose, or gelatine were able to convert L-tyrosine to L-DOPA, which was released Into the medium. Michaelis-Menten kinetics could be applied on the entrapped cells, based on the measurement of initial rates of L-DOPA production. The calculated apparent affinity constants were comparable with the affinity constants obtained with enzyme preparations. Comparison of the apparent maximum rate of bioconversion of the entrapped cells and the maximum rate of bioconversion of a derived cell homogenate indicated that the systems were not operating optimally. Measurement of the effective diffusion coefficients of L-tyrosine pointed out that this substrate could diffuse freely into the matrices. From the initial rates of bioconversion and the effective diffusion coefficients, the observable modulus was calculated for each system. The obtained values confirmed that the diffusional supply rate of L-tyrosine was not the limiting factor. For oxygen, which was utilized for byconversion as well as for cell respiration, the calculated observable moduli was directed toward strong oxygen transfer limitations. The values found for the oxygen consumption indicated that the entrapped cells remained partly or totally viable in the four matrices tested. Based on the highest viability and the highest rates of bioconversion, it was concluded that alginate-entrapped cells of M. pruriens formed the most suitable biocatalytic system for the production of L-DOPA from L-tyrosinre.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge