Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biological Chemistry 1996-Apr

Kinetics and crystallographic analysis of human glutathione reductase in complex with a xanthene inhibitor.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
S N Savvides
P A Karplus

Mo kle

Abstrè

We have determined the crystal structure of a complex between the noncompetitive inhibitor (Kis = 27 microM, Kii = 48 microM with respect to oxidized glutathione (GSSG) and Kis = 144 microM, Kii = 176 microM with respect to NADPH) 6-hydroxy-3-oxo-3H-xanthene-9-propionic acid (XAN) and human glutathione reductase (hGR). The structure, refined to an R-factor of 0.158 at 2.0 A resolution, reveals XAN bound in the large cavity present at the hGR dimer interface where it does not overlap the glutathione binding site. The inhibitor binding causes extensive local structural changes that primarily involve amino acid residues from a 30-residue alpha-helix that lines the cavity and contributes to the active site of hGR. Despite the lack of physical overlap of XAN with the GSSG binding site, no GSSG binding is seen in soaks carried out with high XAN and GSSG concentrations, suggesting that some subtle interaction between the sites exists. An earlier crystallographic analysis on the complex between hGR and 3,7-diamino-2,8-dimethyl-5-phenyl-phenazinium chloride (safranin) showed that safranin bound at this same site. We have found that safranin also inhibits hGR in a noncompetitive fashion, but it binds about 16 times less tightly (Kis = 453 microM, Kii = 586 microM with respect to GSSG) than XAN and does not preclude the binding of GSSG in the crystal. Although in structure-based drug design competitive inhibitors are usually targetted, XAN's binding to a well defined site that is unique to glutathione reductase suggests that noncompetitive inhibitors could also serve as lead compounds for structure-based drug design, in particular as components of chimeric inhibitors.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge