Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Computational Biology and Chemistry 2019-Aug

Modeling, stability and the activity assessment of glutathione reductase from Streptococcus Thermophilus; Insights from the in-silico simulation study.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Nazanin Gholampour-Faroji
Razieh Farazmand
Jafar Hemmat
Aliakbar Haddad-Mashadrizeh

Mo kle

Abstrè

Antioxidant enzymes (AEs) are the main parts of the natural barriers of the body which deactivate the oxidant factors. To discover and understand their structures and function will deserve a deeper investigation. Accordingly, as an AE of probiotic strains, glutathione reductase of Streptococcus thermophilus (GRst), is characterized and modeled by in-silico methods. The investigation indicated the physicochemical properties of the enzyme and estimated its half-life of being more than 10 h. The analysis revealed that the enzyme is composed of 86 strands, 123 helices, and 241 random coils. Homology modeling of the GRst led to the construction of the enzyme's 3D model that 62% of which is analogous to the glutathione reductase of Escherichia Coli (GRec), and which is qualitatively high in terms of Molpdf, ERRAT, Verify-3D and Ramachandran scores. Moreover, the structural stability of the model was substantiated within 10 and 20 ns at 400 and 300 K, respectively. Interestingly, these data showed that the enzyme is more stable than GRec at 400 K. In other words, the active cavity of the constructed model is characteristic of 38 amino acid residues within 4 Å around the NADPH and GSSG as corresponding ligands of GRst. Noteworthy, herein is the fact that, CYS40 and CYS45 are specified as the active site residues of this enzyme. Furthermore, the interaction assays of the model support its antioxidant capability which is even more than that of GRec. In general, these data provide a new model of AEs being inclusive of high antioxidant capacity and thermostability.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge