Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Frontiers in Bioscience - Landmark 2004-May

Molecular analysis of "de novo" purine biosynthesis in solanaceous species and in Arabidopsis thaliana.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Eric van der Graaff
Paul Hooykaas
Wolfgang Lein
Jens Lerchl
Gotthard Kunze
Uwe Sonnewald
Ralf Boldt

Mo kle

Abstrè

Purine nucleotides are essential components to sustain plant growth and development. In plants they are either synthesized "de novo" during the process of purine biosynthesis or are recycled from purine bases and purine nucleosides throughout the salvage pathway. Comparison between animals, microorganisms and Arabidopsis, the first plant species with a completely sequenced genome, shows that plants principally use the same biochemical steps to synthesize purine nucleotides and possess all the essential genes and enzymes. Here we report on the cloning and molecular analysis of the complete purine biosynthesis pathway in plants, and the in planta functional analysis of PRPP (5-phosphoribosyl-1-pyrophoshate) amidotransferase (ATase), catalyzing the first committed step of the "de novo" purine biosynthesis. The cloning of the genes involved in the purine biosynthesis pathway was attained by a screening strategy with heterologous cDNA probes and by using S. cerevisiae mutants for complementation. Southern hybridization showed a complex genomic organization for these genes in solanaceous species and their organ- and developmental specific expression was analyzed by Northern hybridization. The specific role of ATase for plant growth and development was analyzed in transgenic tobacco plants exhibiting a reduced ATase activity and in an Arabidopsis T-DNA mutant (atd2) deficient for ATase2. The transgenic tobacco plants as well as the Arabidopsis mutant exhibit a specific and comparable phenotype, which is characterized by strong growth retardation and severe chlorosis in leaves. The formation of white leaves, but green cotyledons is a characteristic trait of the Arabidopsis atd2 mutant.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge