Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Physiologia Plantarum 2014-Sep

NADH-dependent glutamate synthase plays a crucial role in assimilating ammonium in the Arabidopsis root.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Noriyuki Konishi
Keiki Ishiyama
Kaya Matsuoka
Ikumi Maru
Toshihiko Hayakawa
Tomoyuki Yamaya
Soichi Kojima

Mo kle

Abstrè

Plant roots under nitrogen deficient conditions with access to both ammonium and nitrate ions, will take up ammonium first. This preference for ammonium rather than nitrate emphasizes the importance of ammonium assimilation machinery in roots. Glutamine synthetase (GS) and glutamate synthase (GOGAT) catalyze the conversion of ammonium and 2-oxoglutarate to glutamine and glutamate. Higher plants have two GOGAT species, ferredoxin-dependent glutamate synthase (Fd-GOGAT) and nicotinamide adenine dinucleotide (NADH)-GOGAT. While Fd-GOGAT participates in the assimilation of ammonium, which is derived from photorespiration in leaves, NADH-GOGAT is highly expressed in roots and its importance needs to be elucidated. While ammonium as a minor nitrogen form in most soils is directly taken up, nitrate as the major nitrogen source needs to be converted to ammonium prior to uptake. The aim of this study was to investigate and quantify the contribution of NADH-GOGAT to the ammonium assimilation in Arabidopsis (Arabidopsis thaliana Columbia) roots. Quantitative real-time polymerase chain reaction (PCR) and protein gel blot analysis showed an accumulation of NADH-GOGAT in response to ammonium supplied to the roots. In addition the localization of NADH-GOGAT and Fd-GOGAT did not fully overlap. Promoter-β-glucuronidase (GUS) fusion analysis and immunohistochemistry showed that NADH-GOGAT was highly accumulated in non-green tissue like vascular bundles, shoot apical meristem, pollen, stigma and roots. Reverse genetic approaches suggested a reduction in glutamate production and biomass accumulation in NADH-GOGAT transfer DNA (T-DNA) insertion lines under normal CO2 condition. The data emphasize the importance of NADH-GOGAT in the ammonium assimilation in Arabidopsis roots.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge