Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
PLoS ONE 2014

Neuroprotective and anti-inflammatory roles of the phosphatase and tensin homolog deleted on chromosome Ten (PTEN) Inhibition in a Mouse Model of Temporal Lobe Epilepsy.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Valentina Grande
Giusi Manassero
Alessandro Vercelli

Mo kle

Abstrè

Excitotoxic damage represents the major mechanism leading to cell death in many human neurodegenerative diseases such as ischemia, trauma and epilepsy. Caused by an excess of glutamate that acts on metabotropic and ionotropic excitatory receptors, excitotoxicity activates several death signaling pathways leading to an extensive neuronal loss and a consequent strong activation of astrogliosis. Currently, the search for a neuroprotective strategy is aimed to identify the level in the signaling pathways to block excitotoxicity avoiding the loss of important physiological functions and side effects. To this aim, PTEN can be considered an ideal candidate: downstream the excitatory receptors activated in excitotoxicity (whose inhibition was shown to be not clinically viable), it is involved in neuronal damage and in the first stage of the reactive astrogliosis in vivo. In this study, we demonstrated the involvement of PTEN in excitotoxicity through its pharmacological inhibition by dipotassium bisperoxo (picolinato) oxovanadate [bpv(pic)] in a model of temporal lobe epilepsy, obtained by intraperitoneal injection of kainate in 2-month-old C57BL/6J male mice. We have demonstrated that inhibition of PTEN by bpv(pic) rescues neuronal death and decreases the reactive astrogliosis in the CA3 area of the hippocampus caused by systemic administration of kainate. Moreover, the neurotoxin administration increases significantly the scanty presence of mitochondrial PTEN that is significantly decreased by the administration of the inhibitor 6 hr after the injection of kainate, suggesting a role of PTEN in mitochondrial apoptosis. Taken together, our results confirm the key role played by PTEN in the excitotoxic damage and the strong anti-inflammatory and neuroprotective potential of its inhibition.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge