Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European journal of biochemistry 1987-Dec

Physico-chemical studies of micelle formation on sepia cartilage collagen solutions in acetate buffer and its interaction with ionic and nonionic micelles. Hydrodynamic and thermodynamic studies.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
A B Mandal
D V Ramesh
S C Dhar

Mo kle

Abstrè

Sepia cartilage collagen (pepsin-extracted) in acetate buffer (pH = 2.98) forms micelles at a particular concentration below which they do not normally form. The critical micelle concentration (cmc) of the collagen was determined in buffer as well as in SDS, cetyltrimethylammonium bromide (CTAB) and Tween-80 micellar environments at different temperatures. Mutual interaction of collagen micelles with the ionic and nonionic micelles through the formation of the mixed micelle concept has also been found. The cmc of collagen decreased in the presence of SDS and Tween-80 micelles whereas it increased in the presence of CTAB micelles. This clearly suggests that the micelle formation of collagen is facilitated by the presence of SDS and Tween-80 and hindered by CTAB micelles. The various thermodynamic parameters were estimated from viscosity measurements and the transfer of collagen into the micelles of various surfactants and the reverse phenomenon was analyzed. This analysis has also been modelled conceptually as a different phase and the results have supported the above phenomenon. Our thermodynamic results are also able to predict the exact denaturation temperature as well as the structural order of water in the collagen in various environments. The hydrated volumes, Vh, of collagen in the above environments and intrinsic viscosity were also calculated. The low intrinsic viscosity, [eta], of collagen in an SDS environment compared to buffer and other surfactant environments suggested more workable systems in cosmetic and dermatological skin care preparations. The one and two-hydrogen-bonded models of this collagen in various environments have been analyzed. The calculated thermodynamic parameters varied with the concentration of collagen. The change of thermodynamic parameters from coil-coil to random-coil conformation upon denaturation of collagen were calculated from the amount of proline and hydroxyproline residues and compared with viscometric results. Thermodynamic results suggest that the stability of the collagen in the additive environments is in the following order: SDS greater than Tween-80 greater than buffer greater than CTAB.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge