Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Resuscitation 2010-Jun

Plasma and myocardial visfatin expression changes are associated with therapeutic hypothermia protection during murine hemorrhagic shock/resuscitation.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
David G Beiser
Huashan Wang
Jing Li
Xu Wang
Violeta Yordanova
Anshuman Das
Tamara Mirzapoiazova
Joe G N Garcia
Susan A Stern
Terry L Vanden Hoek

Mo kle

Abstrè

OBJECTIVE

Cytokine production during hemorrhagic shock (HS) could affect cardiac function during the hours after resuscitation. Visfatin is a recently described protein that functions both as a proinflammatory plasma cytokine and an intracellular enzyme within the nicotinamide adenine dinucleotide (NAD(+)) salvage pathway. We developed a mouse model of HS to study the effect of therapeutic hypothermia (TH) on hemodynamic outcomes and associated plasma and tissue visfatin content.

METHODS

Mice were bled and maintained at a mean arterial pressure (MAP) of 35 mmHg. After 30 min, animals (n=52) were randomized to normothermia (NT, 37+/-0.5 degrees C) or TH (33+/-0.5 degrees C) followed by rewarming at 60 min following resuscitation. After 90 min of HS (S90), mice were resuscitated and monitored for 180 min (R180). Visfatin, interleukin 6 (IL-6), keratinocyte-derived chemokine (KC), tumor necrosis factor-alpha (TNF-alpha), and myoglobin were measured by ELISA.

RESULTS

Compared to NT, TH animals exhibited improved R180 survival (23/26 [88.5%] vs. 13/26 [50%]; p=0.001). Plasma visfatin, IL-6, KC, and TNF-alpha increased by S90 in both groups (p<0.05). TH attenuated S90 plasma visfatin and, after rewarming, decreased R180 plasma IL-6, KC, and myoglobin (p<0.05) relative to NT. Heart and gut KC increased at S90 while IL-6 increases were delayed until R180 (p<0.05). NT produced sustained elevations of myocardial KC but decreased visfatin by R180, effects abrogated by TH (p<0.05).

CONCLUSIONS

In a mouse model of HS, TH improves hemodynamics and alters plasma and tissue proinflammatory cytokines including the novel cytokine visfatin. TH modulation of cytokines may attenuate cardiac dysfunction following HS.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge