Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Pathology 2002-Jun

Reduction of hypoxia-inducible heme oxygenase-1 in the myocardium after left ventricular mechanical support.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Florian Grabellus
Christof Schmid
Bodo Levkau
Dirk Breukelmann
Philip F Halloran
Christian August
Nobuakira Takeda
Atsushi Takeda
Markus Wilhelm
Mario C Deng

Mo kle

Abstrè

Left ventricular assist devices (LVAD) may improve cardiac function. The pathogenesis of this phenomenon, called 'reverse remodelling', is not completely elucidated. To examine the hypothesis that LVAD support eliminates tissue stress by reducing local hypoxia, the distribution of heme oxygenase-1 (HO-1), a stress protein inducible by hypoxia, was examined in vivo and in vitro. The immunoreactivity for HO-1 was semi-quantitatively analysed in left ventricular tissue of 23 patients (14 dilated cardiomyopathy (DCM), six ischaemic heart disease (IHD), three myocarditis/congenital heart disease) with end-stage heart failure before and after LVAD support, while two unused donor hearts served as controls. Control hearts stained almost negative for HO-1, while failing hearts showed immunoreactivity mainly in cardiomyocytes, but also in endothelial cells, some smooth muscle cells and fibroblasts. Hearts with IHD showed significantly higher HO-1 immunoreactivity than hearts with DCM or myocarditis/congenital heart disease. After LVAD support, the HO-1 content decreased significantly in the DCM and IHD group and was significantly higher in the subendocardium than in the subepicardium. In vitro, under hypoxic conditions, neonatal rat cardiomyocytes showed an increase of HO-1 protein content up to sixfold above the normal level, which returned to normal values after normoxic cultivation. Mechanical support reduces the HO-1 content of the failing heart and HO-1 is inducible in vitro under hypoxia and is reversible under normoxia. This supports the concept that restoration of cardiac normoxia by mechanical unloading, particularly in the subendocardium, may be in part responsible for the phenomenon of 'reverse remodelling'.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge