Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Planta 2004-Sep

Rescue of defective auxin-mediated gene expression and root meristem function by inhibition of ethylene signalling in sterol biosynthesis mutants of Arabidopsis.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Martin A Souter
Margaret L Pullen
Jennifer F Topping
Xianlong Zhang
Keith Lindsey

Mo kle

Abstrè

The roles of sterols in plant development are not well understood, but evidence is emerging that they are required for cell division, polarity and patterning by mechanisms that are independent of brassinosteroids, of which they are precursors. Previous evidence shows that two sterol-defective mutants of Arabidopsis thaliana (L.) Heynh., hyd1 and fk(hyd2), are defective in root development. Here we show that the HYD1 gene, like the FK gene, is transcriptionally active in both primary and lateral root meristems, though not in the shoot apical meristem. The patterns of cell division during early stages of lateral root initiation in the hyd1 and fk(hyd2) mutants appear normal. Previous evidence also suggests that auxin and ethylene signalling is defective in the mutants. Here we show that the cytokinin- and ethylene-responsive ACS1::GUS reporter in the fk(hyd2) mutant responds to exogenous cytokinins but not to the ethylene precursor 1-aminocyclopropane-1-carboxylic acid, indicative of normal cytokinin signalling but supporting the hypothesis that ethylene signalling is defective. The defective root meristem cell division activity and expression patterns of the auxin-regulated DR5::GUS and IAA2::GUS reporters can be rescued to a significant extent by the pharmacological or genetic inhibition of ethylene signalling, but not by treatment with aminoethoxyvinylglycine, an inhibitor of ethylene synthesis. This supports the emerging view that the hyd1 and fk(hyd2) mutants exhibit an enhanced and unregulated ethylene signalling activity, which accounts for at least part of the observed mutant phenotypes, including disrupted auxin signalling. The possible relationship between ethylene signalling, membrane sterols and meristem function is discussed.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge