Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cell and Tissue Banking 2019-Jun

Ribose pre-treatment can protect the fatigue life of γ-irradiation sterilized bone.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Tarik Attia
Marc Grynpas
Thomas Willett

Mo kle

Abstrè

Structural bone allografts are often sterilized with γ-irradiation to decrease infection risk, which unfortunately degrades the bone collagen connectivity, making the bone weak and brittle. In previous studies, we successfully protected the quasi-static mechanical properties of human cortical bone by pre-treating with ribose, prior to irradiation. This study focused on the quasi-static and fatigue tensile properties of ribose treated irradiated sterilized bone allografts. Seventy-five samples were cut from the mid-shaft diaphysis of human femurs into standardized dog-bone shape geometries for quasi-static and fatigue tensile testing. Specimens were prepared in sets of three adjacent specimens. Each set was made of a normal (N), irradiated (I) and ribose pre-treated + irradiation (R) group. The R group was incubated in a 1.2 M ribose solution before γ-irradiation. The quasi-static tensile and decalcified tests were conducted to failure under displacement control. The fatigue samples were tested under cyclic loading (10 Hz, peak stress of 45MP, minimum-to-maximum stress ratio of 0.1) until failure or reaching 10 million cycles. Ribose pre-treatment significantly improved significantly the mechanical properties of irradiation sterilized human bone in the quasi-static tensile and decalcified tests. The fatigue life of the irradiated group was impaired by 99% in comparison to the normal control. Surprisingly, the R-group has significantly superior properties over the I-group and N-group (p < 0.01, p < 0.05) (> 100%). This study shows that incubating human cortical bone in a ribose solution prior to irradiation can indeed improve the fatigue life of irradiation-sterilized cortical bone allografts.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge