Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1985-Apr

Separation of the Mg-ATPases from the Ca-Phosphatase Activity of Microsomal Membranes Prepared from Barley Roots.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
F M Dupont
W J Hurkman

Mo kle

Abstrè

Two methods for preparing membrane fractions from barley (Hordeum vulgare cv California Mariout 72) roots were compared in order to resolve reported differences between the characteristics of the plasma membrane ATPase of barley and that of other species. When microsomal membranes were prepared by a published procedure and applied to a continuous sucrose gradient, the membranes sedimented as a single broad band with a peak density of 1.16 grams per cubic centimeter (g/cm(3)). Activities of NADH cytochrome (Cyt) c reductase, Ca(2+)-ATPase, and Mg(2+)-ATPase were coincident and there was little ATP-dependent proton transport anywhere on the gradient. When the homogenization procedure was modified by increasing the pH of the buffer and the ratio of buffer to roots, the microsomal membranes separated as several components on a continuous sucrose gradient. A Ca(2+)-phosphatase was at the top of the gradient, NADH Cyt c reductase at 1.08 g/cm(3), a peak of ATP-dependent proton transport at 1.09 to 1.12 g/cm(3), a peak of nitrate-inhibited ATPase at 1.09 to 1.12 g/cm(3), and of vanadate-inhibited ATPase at 1.16 g/cm(3). The Ca(2+)-phosphatase had no preference for ATP over other nucleoside di- and tri-phosphates and was separated from the vanadate-inhibited ATPase on a sucrose gradient; approximately 70% of the Ca(2+)-phosphatase was removed from the microsomes by washing with 150 millimolar KCl. The vanadate-sensitive ATPase required Mg(2+), was highly specific for ATP, and was not affected by the KCl wash. These results show that barley roots have a plasma membrane ATPase similar to that of other plant species.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge