Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Dairy Science 2019-Aug

Short communication: Effect of manipulating fatty acid profile on gluconeogenic gene expression in bovine primary hepatocytes.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
K Weld
S Erb
H White

Mo kle

Abstrè

During the peripartum period, dairy cows experience both an increase in circulating fatty acid (FA) profile and a change in circulating FA profile, which have been shown to alter regulation of gluconeogenic genes. The objective was to quantify gene expression of key enzymes involved in gluconeogenesis and FA transport into the mitochondria in primary hepatocytes in response to exposure to an FA mixture mimicking what is circulating in a transition dairy cow with or without enrichment of C16:0, C18:0, and C18:1. Primary hepatocytes were isolated from 4 Holstein bull calves 3 d of age (± standard deviation 2 d) and cultured. Twenty-four hours after plating, treatments were applied to the cells for 24-h incubation. Treatments consisted of (1) control (1% BSA), (2) 0.75 mM FA cocktail (3% C14:0, 27% C16:0, 23% C18:0, 31% C18:1, 8% C18:2, and 8% C18:3 to mimic the FA profile of dairy cattle at calving), (3) 0.90 mM FA cocktail, (4) 0.75 mM FA cocktail + 0.15 mM C16:0, (5) 0.75 mM FA cocktail + 0.15 mM C18:0, and (6) 0.75 mM FA cocktail + 0.15 mM C18:1. After harvest in Trizol (Life Technologies, Carlsbad, CA), samples were stored at -80°C until RNA extraction, purification, and reverse transcription. Abundance of mRNA was measured using quantitative real-time PCR. Expression of genes of interest [carnitine palmitoyltransferase 1A, pyruvate carboxylase, cytosolic phosphoenolpyruvate carboxykinase (PCK1), mitochondrial phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase] was calculated relative to the average abundance of 2 reference genes (ribosomal protein L32 and glyceraldehyde 3-phosphate dehydrogenase), which were the most stable out of 3 tested. Data were analyzed using PROC MIXED (SAS version 9.4; SAS Institute, Cary, NC) with the fixed effect of treatment and calf in the random statement. The addition of FA compared with the 1% BSA treatment increased the expression of carnitine palmitoyltransferase 1A and cytosolic PCK1. Enrichment with individual FA did not further regulate pyruvate carboxylase or PCK1 beyond that achieved by the basal profile. These results suggest that shifts in circulating FA profile within a biological range, without a difference in the total FA concentration, have minimal effects on transcriptional regulation of hepatic gluconeogenic genes in primary bovine hepatocytes.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge