Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Annals of Neurology 2011-Oct

Significance of marrow-derived nicotinamide adenine dinucleotide phosphate oxidase in experimental ischemic stroke.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Xian N Tang
Zhen Zheng
Rona G Giffard
Midori A Yenari

Mo kle

Abstrè

OBJECTIVE

Reperfusion after stroke leads to infiltration of inflammatory cells into the ischemic brain. Nicotinamide adenine dinucleotide phosphate oxidase (NOX2) is a major enzyme system that generates superoxide in immune cells. We studied the effect of NOX2 derived from the immune cells in the brain and in blood cells in experimental stroke.

METHODS

To establish whether NOX2 plays a role in brain ischemia, strokes were created in mice, then mice were treated with the NOX2 inhibitor apocynin or vehicle and compared to mice deficient in NOX2's gp91 subunit and their wild-type littermates. To determine whether NOX2 in circulating cells versus brain resident cells contribute to ischemic injury, bone marrow chimeras were generated by transplanting bone marrow from wild-type or NOX2-deficient mice into NOX2 or wild-type hosts, respectively.

RESULTS

Apocynin and NOX2 deletion both significantly reduced infarct size, blood-brain barrier disruption, and hemorrhagic transformation of the infarcts, compared to untreated wild-type controls. This was associated with decreased matrix metalloproteinase 9 expression and reduced loss of tight junction proteins. NOX2-deficient mice receiving wild-type marrow had better outcomes compared to the wild-type mice receiving wild-type marrow. Interestingly, wild-type mice receiving NOX2-deficient marrow had even smaller infarct sizes and less hemorrhage than NOX2-deficient mice receiving wild-type marrow.

CONCLUSIONS

This indicates that NOX2, whether present in circulating cells or brain resident cells, contributes to ischemic brain injury and hemorrhage. However, NOX2 from the circulating cells contributed more to the exacerbation of stroke than that from brain resident cells. These data suggest the importance of targeting the peripheral immune system for treatment of stroke.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge