Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Archives of Biochemistry and Biophysics 1991-Jan

Site-specific mechanisms of initiation by chelated iron and inhibition by alpha-tocopherol of lipid peroxide-dependent lipid peroxidation in charged micelles.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
T Fujii
Y Hiramoto
J Terao
K Fukuzawa

Mo kle

Abstrè

To obtain information on the role of iron-catalyzed lipid peroxidation in the presence of the small amount of lipid peroxide in deterioration of biological membranes, we examined factors affecting peroxidation of fatty acids in charged micelles. Peroxidation of linoleic acid (LA) was catalyzed by Fe2+ via reductive cleavage of linoleic acid hydroperoxide (LOOH) in negatively charged sodium dodecyl sulfate micelles, but not in positively charged tetradecyltrimethylammonium bromide (TTAB) micelles. However, this Fe2(+)-induced, LOOH-dependent lipid peroxidation could be induced in TTAB micelles in the presence of a negatively charged iron chelator, nitrilotriacetic acid (NTA). The linoleic acid alkoxy radical (LO.) generated by the LOOH-dependent Fenton reaction was also trapped by N-t-butyl-alpha-phenylnitrone at the surface of TTAB micelles in the presence of NTA, but not in its absence. The degradation rates of two spin probes, N-oxyl-4,4'-dimethyloxazolidine derivatives of stearic acid (5-NS and 16-NS), were investigated to determine the site of production of radicals formed during LOOH-dependent lipid peroxidation. The rate of consumption of 16-NS during the LOOH-dependent Fenton-like reaction was higher in TTAB micelles containing LA than in those containing lauric acid (LauA), although the rates of formation of LO. in the two types of fatty acid micelles were similar. The rates of 5-NS consumption in LA and LauA micelles were almost the same and were as low as that of 16-NS consumption in LauA micelles. 16-NS was more inhibitory than 5-NS of LOOH-dependent lipid peroxidation, and this inhibition was associated with its higher consumption of 16-NS than of 5-NS. alpha-Tocopherol inhibited NTA-Fe2(+)-induced LOOH-dependent lipid peroxidation in TTAB micelles, and was oxidized during this inhibition process. The rate and amount of alpha-tocopherol oxidized by the LOOH-dependent Fenton reaction were higher in LA micelles than in LauA micelles. alpha-Tocopherol inhibited the consumption of 16-NS during NTA-Fe2(+)-induced LOOH-dependent lipid peroxidation more effectively than that of 5-NS. The distribution of the chromanol moiety of alpha-tocopherol was studied by the fluorescence quenching method. There was no difference between Stern-Volmer plots of the quenchings of alpha-tocopherol fluorescence by 5-NS and 16-NS. From these results, we discuss the mechanism of induction of LOOH-dependent peroxidation of LA and the mechanism of the antioxidant effects of alpha-tocopherol on it from the viewpoint of site-specific reaction.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge